Publications & Software

 

Andreas B. Dahlin

Disclaimer:

This is a personal webpage created by me. It does not necessarily reflect the opinions and policies of the University I am affiliated with.

 

Copyright ©

Andreas B. Dahlin

Publications

Research Papers

Switchable plasmonic metasurfaces with high chromaticity containing only abundant metals.

K. Xiong, D. Tordera, G. Emilsson, O. Olsson, U. Linderhed, M.P. Jonsson, A.B. Dahlin.*

Nano Letters (accepted).

 

Fabrication and characterization of plasmonic nanopores with cavities in the solid support.

B. Malekian & K. Xiong, G. Emilsson, J. Andersson, C. Fager, E.M. Larsson-Langhammer, A.B. Dahlin.*

Sensors 2017, 7 (6), 1444 (article).

 

Superior LSPR substrates based on electromagnetic decoupling for on-a-chip high-throughput label-free biosensing.

S.S. Aćimović, H. Šípová, G. Emilsson, A.B. Dahlin, T. Antosiewicz, M. Käll.*

Light: Science & Applications 2017, 6, e17042 (article).

 

Surface plasmon resonance methodology for monitoring polymerization kinetics and morphology changes of brushes - evaluated with poly(N-isopropylacrylamide).

G. Emilsson, R.L. Schoch, P. Oertle, K. Xiong, R.Y.H. Lim, A.B. Dahlin.*

Applied Surface Science 2017, 396, 384-392 (full length article).

 

Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color.

K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E.W.H. Jager, A.B. Dahlin.*

Advanced Materials 2016, 28 (45), 9956-9960 (communication).

 

Dual-wavelength surface plasmon resonance for determining the size and concentration of sub-populations of extracellular vesicles.

D.L.M. Rupert, G.V. Shelke, G. Emilsson, V. Claudio, S. Block, C. Lässer, A.B. Dahlin, J.O. Lötvall, M. Bally, V.P. Zhdanov, F. Höök.*

Analytical Chemistry 2016, 88 (20), 9980–9988 (article).

 

Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters.

K. Xiong, G. Emilsson, A.B. Dahlin.*

Analyst 2016, 141 (12), 3803-3810 (article, Emerging Investigator issue).

 

Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature.

J. Junesch, G. Emilsson & K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, A.B. Dahlin.*

Nanoscale 2015, 7 (37), 15080-15085 (communication).

 

Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures.

Y. Fang,* Y. Jiao, K. Xiong, R. Ogier, Z.-J. Yang, S. Gao, A.B. Dahlin, M. Käll.*

Nano Letters 2015, 15 (6), 4059–4065 (letter).

 

Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to.

G. Emilsson, R.L. Schoch, L. Feuz, F. Höök, R.Y.H. Lim, A.B. Dahlin.*

ACS Applied Materials & Interfaces 2015, 7 (14), 7505–7515 (article).

 

Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes.

F. Mazzotta, T. Johnson, A.B. Dahlin, J. Shaver, S.-H. Oh, F. Höök.*

ACS Photonics 2015, 2 (2), 256–262 (article).

 

A thermal plasmonic sensor platform: Resistive heating of nanohole arrays.

M. Virk & K. Xiong, M. Svedendahl, M. Käll, A.B. Dahlin.*

Nano Letters 2014, 14 (6), 3544–3549 (letter).

 

Plasmonic nanopores in metal-insulator-metal films.

A.B. Dahlin,* M. Mapar, K. Xiong, F. Mazzotta, F. Höök, T. Sannomiya.

Advanced Optical Materials 2014, 2 (6), 556–564 (full paper, with frontispiece).

 

Single-particle plasmon sensing of discrete molecular events: Binding position versus signal variations for different sensor geometries.

V. Claudio, A.B. Dahlin, T. Antosievicz.*

Journal of Physical Chemistry C 2014, 118 (13), 6980–6988 (article).

 

Embedded plasmonic nanomenhirs as location-specific biosensors.

K. Kumar, A.B. Dahlin, T. Sannomiya, S. Kaufmann, L. Isa, E. Reimhult.*

Nano Letters 2013, 13 (12), 6122–6129 (letter).

 

Optical resonances in short-range ordered nanoholes in ultrathin aluminum / aluminum nitride multilayers.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A.B. Dahlin, T. Sannomiya.*

Journal of Physical Chemistry C 2013, 117 (12), 6373–6382 (article).

 

Simultaneous electrical and plasmonic monitoring of potential induced ion adsorption on metal nanowire arrays.

R. MacKenzie, C. Fraschina, B. Dielacher, T. Sannomiya, A.B. Dahlin, J. Vörös.*

Nanoscale 2013, 5 (11), 4966–4975 (full paper).

 

Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography.

J. Junesch, T. Sannomiya, A.B. Dahlin.*

ACS Nano 2012, 6 (11), 10405-10415 (article).

 

Nanoplasmonic sensing of metal-halide complex formation and the electric double layer capacitor.

A.B. Dahlin,* R. Zahn, J. Vörös.

Nanoscale 2012, 4 (7), 2339-2351 (full paper).

 

Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications.

T. Sannomiya,* O. Scholder, K. Jefimovs, C. Hafner, A.B. Dahlin.*

Small 2011, 7 (12), 1653-1663 (full paper, cover page).

 

Electrochemical crystallization of plasmonic nanostructures.

A.B. Dahlin,* T. Sannomiya, R. Zahn, G.A. Sotiriou, J. Vörös.

Nano Letters 2011, 11 (3), 1337-1343 (letter).

 

Electrochemistry on a localized surface plasmon resonance sensor.

T. Sannomiya, H. Dermutz, C. Hafner, J. Vörös, A.B. Dahlin.*

Langmuir 2010, 26 (10), 7619-7626 (article).

 

Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing.

M.P. Jonsson,* A.B. Dahlin, L. Feuz, S. Petronis, F. Höök.*

Analytical Chemistry 2010, 82 (5), 2087-2094 (article).

 

QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics.

G.E. Rydell, A.B. Dahlin, F. Höök, G. Larson.*

Glycobiology 2009, 19 (11), 1176-1184 (article).

 

High-resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing.

A.B. Dahlin,* S. Chen, M.P. Jonsson, L. Gunnarsson, M. Käll, F. Höök.*

Analytical Chemistry 2009, 81 (16), 6572-6580 (article, accelerated publication).

 

Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions.

A.B. Dahlin, P. Jönsson, M.P. Jonsson, E. Schmid, Y. Zhou, F. Höök.*

ACS Nano 2008, 2 (10), 2174-2182 (article).

 

Label-free plasmonic detection of biomolecular binding by a single gold nanorod.

G.J. Nusz, S.M. Marinakos, A.C. Curry, A. Dahlin, F. Höök, A. Wax, A. Chilkoti.*

Analytical Chemistry 2008, 80 (4), 984-989 (article).

 

Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold.

A.B. Dahlin, M.P. Jonsson, F. Höök.*

Advanced Materials 2008, 20 (8), 1436-1442 (communication).

 

Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template.

M.P. Jonsson, P. Jönsson, A.B. Dahlin, F. Höök.*

Nano Letters 2007, 7 (11), 3462-3468 (letter).

 

Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures.

R. Marie, A.B. Dahlin, J.O. Tegenfeldt, F. Höök.*

Biointerphases 2007, 2 (1), 49-54 (article).

 

Quantitative interpretation of gold nanoparticle-based bioassays designed for detection of immunocomplex formation.

Y. Zhou, H. Xu, A.B. Dahlin, J. Vallkil, C.A.K. Borrebäck, C. Wingren, B. Liedberg, F. Höök.*

Biointerphases 2007, 2 (1), 6-14 (article).

 

Improving the instrumental resolution of sensors based on localized surface plasmon resonance.

A.B. Dahlin, J.O. Tegenfeldt, F. Höök.*

Analytical Chemistry 2006, 78 (13), 4416-4423 (article).

 

Plasmonic sensing characteristics of singe nanometric holes.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D.S. Sutherland, M. Käll.*

Nano Letters 2005, 5 (11), 2335-2339 (letter).

 

Phospholipid vesicle adsorption measured in situ with resonating cantilevers in a liquid cell.

S. Ghatnekar-Nilsson,* J. Lindahl, A. Dahlin, T. Stjernholm, S. Jeppesen, F. Höök, L. Montelius.

Nanotechnology 2005, 16 (9), 1512-1516 (article).

 

Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events.

A. Dahlin, M. Zäch, T. Rindzevicius, D.S. Sutherland, M. Käll, F. Höök.*

Journal of the American Chemical Society 2005, 127 (14), 5043-5048 (article).

Erratum

Please click here for a pdf file with a list of errors I have found in existing publications.

 

Review Articles

Sensing applications based on plasmonic nanopores: The hole story

A.B. Dahlin.*

Analyst 2015, 140 (14), 4748-4759 (critical review).

 

Promises and challenges of nanoplasmonic devices for refractometric biosensing.

A.B. Dahlin & N. Wittenberg, F. Höök, S.-H. Oh.*

Nanophotonics 2013, 2 (2), 83–101 (review).

 

Size matters: Problems and advantages associated with highly miniaturized sensors.

A.B. Dahlin.*

Sensors 2012, 12 (3), 3018-3036 (review).

 

Electrochemical plasmonic sensors.

A.B. Dahlin,* B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, J. Vörös.

Analytical and Bioanalytical Chemistry 2012, 402 (5), 1773-1784 (review).

 

Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films (review).

M.P. Jonsson,* A.B. Dahlin, P. Jönsson, F. Höök.*

Biointerphases 2008, 3 (3), FD30-FD40 (in focus review).

 

Supported lipid bilayers, tethered lipid vesicles, and vesicle fusion investigated using gravimetric, plasmonic, and microscopy techniques.

F. Höök,* G. Stengel, A.B. Dahlin, A. Gunnarsson, M.P. Jonsson, P. Jönsson, E. Reimhult, L. Simonsson, S. Svedhem.

Biointerphases 2008, 3 (2), FA108-FA116 (in focus review, cover page featured).

 

Book Contributions

Nanoantennas for refractive index sensing.

T. Shegai,* M. Svedendahl, S. Chen, A. Dahlin, M. Käll.

Cambridge University Press 2013, Optical Nanoantennas, 361-377 (book chapter).

 

Performance of nanoplasmonic biosensors.

A.B. Dahlin,* M.P. Jonsson.

Springer 2012, Nanoplasmonic Sensors, 231-265 (book chapter).

 

Nanoplasmonic sensing combined with artificial cell membranes.

M.P. Jonsson,* A.B. Dahlin, F. Höök.

Springer 2012, Nanoplasmonic Sensors, 59-82 (book chapter).

 

Plasmonic biosensors: An integrated view of refractometric detection.

A.B. Dahlin.*

IOS Press 2012, Advances in Biomedical Spectroscopy 4 (sole author book).

MATLAB Programs

TransferMatrix.m

This program calculates the transmission, reflection and absorption in an arbitrary thin film multilayer system.

Download the MATLAB file here: TransferMatrix3.m

The figure shows the result generated by the program when run as is. In this case, it generates the far field angular spectrum (670 nm incident light) of a 50 nm gold film on glass in water. The surface plasmon excitation is seen as a dip in the reflection. The simulation also includes a dielectric coating on the gold film (n = 1.4) with different thickness (hence the series of graphs). This can be thought of as a simulation of a plasmonic biosensor system.

The TransferMatrix program can be used to simulate transmission through and reflection from any kind of thin film multilayer - just change the parameters in the beginning of the file! You can also change to a wavelength spectrum at a fixed angle of incidence. If a material is dispersive you should just include a new refractive index calculation in the wavelength loop.

I use the TransferMatrix program to simulate the transmission of light through my thin film multilayers. Although the program naturally does not consider the precense of pores in the layer it still gives a good estimate of peaks and dips due to Fabry-Perot interference and simplifies interpretation of experimental spectra of nanopore arrays.

You are free to use the MATLAB code for any purpose but please cite the reference: J. Junesch, T. Sannomiya, A.B. Dahlin, ACS Nano 2012. The supporting information for this paper describes the calculations.

SurfaceWavesTM.m

This program calculates the dispersion relation for transverse magnetic surface waves in an arbitrary thin film multilayer system.

Download the MATLAB file here: SurfaceWavesTM6.m

This program can be user configured as the transfer matrix calculations. When used as is, it will calculate the dispersion relation of hybridized surface plasmon modes in a metal-insulator-metal system (20 nm Au on both sides of a 50 nm n = 2.24 dielectric in air). The figure below shows the results of solving for the higher energy hybridized bonding mode. The plots generated are for dispersion, propagation length and fields. (The magnetic field gives a 1D plot for TM modes while the electric field is more complicated to visualize since it has two components.)

The algorithm solves the equations by finding the real and imaginary parts of the k vector by minimization. The program starts with generating a plot of the numerical residual for different values of the k initial guess. You should click in the plot at a location where you see a minimum. Different minima correspond to different modes.

You are free to use the MATLAB code for any purpose but please cite a suitable reference like: A.B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, T. Sannomiya, Advanced Optical Materials 2014. The supporting information for this paper describes the calculations in detail.