Polymers 1

A (4p)

What is a gel and a gelation process? What is the "gel fraction"? (Explain qualitatively, not with equations.) One usually divides gels into two classes. What is characteristic for them? Give one example of a gel TYPE from each class! (No need to draw chemical structures.)

Gel consists of similar subunits that are connected to form an "infinite" network. The gelation is the process in which the subunits become connected. The gel fraction is the fraction of bonds between subunits that are part of the infinite cluster that holds the gel together. Chemical gels: Covalent bonds link the subunits together, such as epoxy glues. Physical gels: Typically reversible interactions, not covalent bonds, for instance gelatin.

Comment: Some people just wrote down the equations. This gives no points. The physics must be explained!

B (4p)

What is "terminal time" and "plateau modulus" in the context of reptation theory? For each of these two parameters, describe whether or not it depends on the degree of polymerization! (You must motivate the answers.)

The terminal time is the characteristic time after which the polymers are no longer entangled and flow starts in the melt. It depends on the degree of polymerization since longer polymers have more entanglement points. The plateau value is the typical more of less constant stress one measures after a deformation before the terminal time. This depends on the distance between entanglement points and not N.

Comment: I should have used the term "plateau value" in the text instead of modulus, but it should be clear that the same physical phenomena is described.

C (2p)

What is a lamellae in the context of polymers? Include a sketch of its structure!

Lamellae is the 2D sheet of crystalline polymers with aligned stretched coils. Parts of the coils are always sticking out on both sides of the lamellae since polymers are never fully crystalline.

Polymers 2

A (4p)

Polystyrene has the following structure:

It is dissolved in a good organic solvent with $\chi = -1$ and the molecular weight is 20800 g/mol. Calculate the Flory radius if the Kuhn length is 2 nm and the monomer length 4 Å.

 $m = 104 \text{ gmol}^{-1}$, N = M/m = 200, rescaling gives $R_{\rm F} = 23 \text{ nm}$.

B (3p)

A brush of polystyrene has a thickness which is half the contour length. Assume the same solvent ($\chi = -1$). What is the grafting density?

H = aN/2 means that N can be removed from the equation for brush height, after rescaling only Kuhn length remains and for $\chi = -1$ one gets $\Gamma = b^{-2}/8 = 0.0313$ nm⁻².

C (3p)

The free energy of a coil, including conformational entropy, excluded volume and solvent interactions, can be written as:

$$E_{tot}(r) = \frac{3k_{\rm B}Tr^2}{2Na^2} + \frac{k_{\rm B}T[1-2\chi]N^2a^3}{r^3} + \text{constant}$$

In the derivation of the Flory radius, one makes the assumption that the volume of a segment is a^3 . For a polymer like polystyrene, the aromatic side group is quite bulky compared with the main chain and one could imagine that the segment volume is better described by ca^2 , where c > a is a length corresponding to the extension of the side group. What will be the expression for the Flory radius based on this hypothesis? (Rescaling is not relevant in this purely theoretical treatment.)

Replace a^3 with a^2c , derive with respect to r, solve for: $R_F = [1 - 2\chi]^{1/5} c^{1/5} a^{4/5} N^{3/5}$.

Boltzmann's constant: $k_{\rm B} = 1.38 \times 10^{-23} \, {\rm JK}^{-1}$ Avogadro's number: $N_{\rm A} = 6.02 \times 10^{23} \, {\rm mol}^{-1}$ $T(^{\circ}{\rm C}) = T({\rm K}) - 273.15$ Polydispersity index (M_w/M_n) :

$$M_{n} = \frac{\sum_{i} n_{i} M_{i}}{\sum_{i} n_{i}} \qquad M_{w} = \sum_{i} w_{i} M_{i} = \frac{\sum_{i} n_{i} M_{i} M_{i}}{\sum_{i} n_{i} M_{i}}$$

Random walk:

$$R = aN^{1/2}$$

Worm-like chain model ($b = 2l_p$):

$$R_{\rm wlc} = \left[2l_{\rm p}r_{\rm max}\left[1 - \frac{l_{\rm p}}{r_{\rm max}}\left[1 - \exp\left(-\frac{r_{\rm max}}{l_{\rm p}}\right)\right]\right]\right]^{1/2}$$

Entropy:

$$S = k_{\rm B} \log(W)$$

Gibbs' free energy change:

$$\Delta G = \Delta H - T \Delta S$$

Flory radius (in solvent):

$$R_{\rm F} = \left[1 - 2\chi\right]^{\frac{1}{5}} a N^{\frac{3}{5}}$$

Alexander - de Gennes brush height:

$$H = \left[\frac{1-2\chi}{3}\Gamma\right]^{\frac{1}{3}}a^{\frac{5}{3}}N$$

Reptation theory terminal time:

$$t_{\rm T} = \frac{[aN]^2}{2D_{\rm CIT}} = \frac{\zeta_{\rm segment}aN^3}{2k_{\rm B}T}$$

Gelation threshold and gel fraction:

$$f_{\rm c} = \frac{1}{z-1}$$
 $p_{\rm gel} = 1 - p_0^{z}$ $p_0 = 1 - f + f p_0^{z-1}$

Rubber elasticity modulus:

$$Y = \frac{3\rho k_{\rm B}T}{mN_{\rm part}} \qquad G_{\rm e} = \frac{\rho k_{\rm B}T}{M_{\rm eff}}$$

Oscillatory deformation $e(t) = e_0 \sin(\omega t)$ stress response and dynamic modulus:

$$\sigma(t) = \sigma_0 \sin(\omega t + \delta) \quad \tan(\delta) = \frac{\operatorname{Im}(G_{\rm DM})}{\operatorname{Re}(G_{\rm DM})} \quad G_{\rm DM}(\omega) = i\omega \int_0^\infty \exp(-i\omega t)G(t)dt$$

	Actinide S	Lanthanide		87 Fr Intractional (223)	55 CS ^{Dojes¹ (resume 132.9}	37 Rb ^{85,47}	19 K ^{potassium} 39,10	Na Na sodium 22.99	[HejZs ¹ lithium 6.941	1,1 hydrogen 1.008	IA H
Alan	èrries~	Series*		88 Ra	56 Ba	38 Sr 87.62		12 Mg ^{Deljar} 24.31	Be beryllium 9.012	2A	
NOS	90 Th 190732 ^{26d²} 2322.0	58 Ce ^{xaj62²4^{f1}5d¹}	\searrow	89 Ac~ Impr ² 6d ¹ 227)	57 La*	39 Y	21 Sc scandium 44.96	3B			L
	91 Pa Im172 ⁵ 5 ⁶ 60 ¹ protactinium (231)	59 Pr ^{Kols24f³ raseodymium 140.9}		104 Rf Payr2 ³ 5f ¹⁴ 6d ² putperformer	72 Hf Degled ² 4f ¹⁴ 5d ² Infinitum Infinitum 178,5	40 Zr 91.22	22 Ti M034 ² 3d ² Hammun Hammun 47.88	4B	1		os Al
	92 Unjp2 ³ 5 ⁴ 6d ¹ Wathing (238)	60 Nd ^{20056²4⁴ neodynamin 144,2}		105 Db Mnj725f ¹⁴ 6d ³ dubbaium (260)	73 Ta Daje ² 4 ¹⁴ 5d ³ tambium 180,9		23 Marste ² ad ³ vanadium 50,94	SB		Peric	lamo
	93 Np Perifical negotimization (2.37)	61 Pm promethum (147)		106 Sg Innj725f ¹⁶ 64 seaborgjium (263)	74 Wojes ² 4 ¹⁴ 5d ⁴ rungsten 183.9	42 Mo INCES ¹ 4d ⁵ moltyndemma 95,94	24 Or S2.00	6B		odic 7	s Na
~	94 Pu Ben73 ² 56 plattomum (242)	62 Sm ^{100162²4⁶ samanium (150,4)}		107 Bh Popyzżst ⁴ 645 (262)	75 Re ^{Deajg241¹⁴5d⁵ Inenum 186.2}		25 Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn	7B		Table	tions
	95 Am (Rn)3 ² 55 ⁷ americium (243)	63 Eu ^{IX0162²4⁷}		108 HS Peq172 ² 5f ¹⁴ 6d ⁶ Massium (265)	76 OS ^{projec²-4¹⁴5d⁶ 05mmum 190.2}		26 Fe			of th	ıl Lal
	96 Cm ^{IBN(7,2'54⁷64¹)} (247)	64 Gd ^{Doale2475d1} gadolinium 157.3		109 Mt Mt ^{Mn]325f¹⁴cd⁷ mainterium (266)}	77 Ir ^{[Xo]52-47¹⁴5d⁷ Indium 190.2}	45 Rh Institute 102.9				e Ele	oorat
	97 Bk Papy2350 berkelium (247)	65 Tb ²⁰⁰⁵⁶²⁻⁴⁰ 158.9		110 DS mn73 ¹ 5f ¹⁴ 5d ⁰ 271)	78 Pt ^{Deales 14145d⁹ platinum 195,1}	Pd Pd 106.4	28 Najar ³ 3d ⁸ 58.69			men	ory (
	98 Cf _{[An]75²5¹⁰ californium (249)}	66 Dy Dollar 4410 dysprosium 162.5		Uuu 272	79 Au ^{Dealse 14645d10} gold 197.0	A47 Morise 144100 Morise 144100		11B		ťs	Shem
	99 Es I ^{Rn/72²5¹¹ einsteinium (254)}	67 Ho pope2-4 ¹¹ hotman		Uub	100162-4-1-000 100162-4-1-000	48 112.4		12B			iistry
element names in blue are liqu element names in red are gase element names in black are so	100 Fm _{Pan175²5¹² ferminan (253)}	68 Er ^{peog24112} erfoirm 167.3			81 T1 thallum 204.4	49 In ^{Inflis244¹⁰5p¹ Infliam 114.8}	31 Ga ^{[Ad42-34]049} 59.72	13 Al ^{IN0135³49¹ alumninum 26,98}		3A	Divi
	101 Md 180175 ^{25f13} mendelevium (256)	69 Tm ^{N0/52²4¹³}		114 Uuq (296)	82 Pb ¹ 294/8 ² 41 ¹⁰ 6 ¹ 207.2	50 Sn ^{IXd5s²4d¹⁰5p³ 118.7}	32 Ge	14 Si ^{Nuejs² 3p² silicon 28.09}	Helps ² 2p ² carbon 12.01	6 6	sion
	102 No ^{Perj72²5f¹⁴ mobelium (254)}	70 Yb ^{projez²4¹⁴ ^{ytterbuum} 173.0}			83 Bi 2083 ^{2 d¹⁴5d¹⁰5g 208.9}	51 Sb ^{20155²44¹⁰5p³ ^{20155²44¹⁰5p³} ^{20155²44¹⁰5p³}}	33 As Mala ² ad ¹⁰ 4p ³ Assemic 74.92	15 P ^{Nejze² sp³ phosphorus 30.97}	(Heps ² 2p ³ mitrogen 14.01	5A	
uids at roo s at room lids at roc	103 Lr Penyz ² sf ¹⁴ 6d ¹ Inwrencium (257)	71 Lu ^{Deg62²4¹⁴5d¹ Intetium 175.0}		116 Uuh (298)	84 Po polomim (209)	52 Te ^{pojs24d¹⁰5p⁴ tellurium 127.6}	34 Se ^{[Ar]42²3d¹⁰4p⁴ ^{56]emium} 78.96}	16 S ^{No[32²3p⁴} sulfur 32.07		6A	
m tempera temperatu m tempera					85 At astatime (210)	53 I ^{Del5,24,1%5,p5} iodime 126.9	35 Br Mrt4s ² ad ¹⁰ 4p ⁵ bromme 79,90	Mejar ³ ap ⁵ 35.45	Hepz ² 2p ⁵ fluorine 19.00	7A	
ature re ature				Uu0	86 Rn 222	54 Mojs ² 44 ¹⁰ Sp ⁴ 131.3	36 IKr 83.80	18 Aur argon 39.95	20.18	10	8A He